Algorithms:
Complexity (Big Oh)




Analytical Time Complexity Analysis

e We would like to compare efficiencies of different
algorithms for the same problem, instead of differ-
ent programs or implementations. This removes
dependency on machines and programming skill.

e We would like to estimate how T7'(n) varies with
the input size n.

e |t becomes meaningless to measure absolute time
since we do not have a particular machine in mind.
Instead, we measure the number of steps. We
call this the time complexity or running time and
denote it by T'(n).



Guiding Principle #1

“worst — case analysis” : our running time bound holds
for every input of length n.

-Particularly appropriate for “general-purpose”
routines

As Opposed to ' -

i " , REQUIRES DOMAIN
--"average-case” analysis _  gnowirnar
--benchmarks

BONUS : worst case usually easier to analyze.



Guiding Principle #2

Won’t pay much attention to constant factors,
lower-order terms

Justifications

1. Way easier

2. Constants depend on architecture / compiler /
programmer anyways

3. Lose very little predictive power
(as we’ll see)




Big-Oh: English Definition

Let T(n) = functiononn=1,2,3,...
[usually, the worst-case running time of an algorithm]

Q : Whenis T(n) = O(f(n)) ?
A : if eventually (for all sufficiently large n), T(n) is bounded
above by a constant multiple of f(n)



Big-Oh: Formal Definition
Formal Definition : T(n) = O(f(n)) if
A and only if there exist constants
/> VWY ¢no >0 such that

For all m = no

W > Warning : ¢, ¢ cannot depend on n
Picture T(n) = O(f(n))




Big O notation

Upper bounds. f(n) is O(g(n)) if there exist constants ¢>0 and n, = 0
such that 0 < f(n) < ¢- g(n) for all n = n,.

c-gin)

EX. f(n)=32n>+17n+ 1.
* f(") IS 0(’12)- <«—— choose ¢ =50.n0 =1

* f(n) is neither O(n) nor O(n log n).

fln)

v

no n

Typical usage. Insertion sort makes O(n*) compares to sort n elements.



Big O notational abuses

One-way “equality.” O(g(n)) is a set of functions, but computer scientists
often write f(n) = O(g(n)) instead of f(n) € O(g(n)).

Ex. Consider gi(n)=5n and g.(n) = 3n°.
* We have gi(n) = O(n’) and g2(n) = O(n?).
* But, do not conclude g(n) = g:(n).

g,(n) = O(n?) also can
be written.

Domain and codomain. fand g are real-valued functions.
* The domain is typically the natural numbers: N —R.
* Sometimes we extend to the reals: R., —R. N input size, recurrence relations
« Or restrict to a subset.

plotting, limits, calculus

Bottom line. OK to abuse notation in this way; not OK to misuse it.



Big O notation: properties

Reflexivity. fis O(f).
Constants. If fis O(g) and ¢ >0, then cf is O(g).

Products. If fi1is O(g1) and f2 is O(g2), then fi f2 is O(gi1 g2).
Pf.
* 3¢;>0and n;= 0 such that0< fi(n) < c1-gi(n) forall n = n,.
* 3¢,>0and n,= 0 such that 0 < fa(n) < c2- ga(n) for all n = n,.
« Then, 0< fi(n)-fan) < c1-c2-gi(n) - g2(n) for all n = max { n;, ny}. =

C no

Sums. If f1is O(g)) and f; is O(g>), then f + f> is O(max {g1. g2}).

N

ignore lower-order terms
Transitivity. If fis O(g) and g is O(h), then fis O(h).

Ex. f(n)=5n + 30’ + n + 1234 is O(n’).



Example: 2n* = O(n?), with ¢ = 1 and ny = 2.
Examples of functions in O (n?):

n?

n*+n

n? 4 1000n
1000n° + 1000n
Also,

n

/1000

nl.99999

n’/lglglgn



pronounced “big-oh of ...” or sometimes “oh of ...”

./
O(...) means an upper bound

* Let T(n), g(n) be functions of positive integers.
* Think of T(n) as a runtime: positive and increasing in n.

* We say “T'(n) is 0(g(n))” if T (n) grows no faster
than g(n) as n gets large.

* Formally,
T(n) = 0(g(n))
=
Jdé, 1 > 0 5.6 Y =N,
0<T()<c-g(n)



T(n)=0(gm))

Example I
2 g 2 c,ng >0 s.t. Yn=ny,

Zn + 10 e O(n ) 0<T)<c-gn)
250

= T(n)=2x"2 + 10
=== gin)=x"2

200 1

150 A

100

10



T(n) =0(gn))
Example a

2n2 _|_ 10 — O(nZ) de,ng >0 s.t. Vn = ny,

0<TM)<c-gn)

250

- T(n)=2x"2 + 10 Y

5 /
=== gn)=x"2 3g(n) = 3n2 ,,
2004 === 3*g(n) =3x"2 r

10



Example
2n% + 10 = 0(n?)

250

200 -

150 A

100 A

T(n) = 0(g(n))
=5
dc,ng >0 s.t. Yn = ny,

0<T()<c-ghn)

= T(n)=2x"2 + 10

=== gin)=x"2

=== 3*g(n) = 3x"2
x=n0=4




Example
2n? + 10 = 0(n?)

n,=4

250
= T(n)=2x"2 + 10 . 2
el 3g(n) = 3n
2004 === 3*g(n) = 3x"2 /

- x=n0=4 ’

150 A

100 A

T(n)=0(g())
4
dc,ng >0 s.t. Vn = ny,

0<T()<c-gn)

Formally:

* Choosec=3
* Choose n,=4
* Then:

Vn = 4,
0<2n?+10<3:n?



Same example
2n% + 10 = 0(n?)

250

200 -

150 -

100

— T(n)=2x"2 + 10 /
=== g(n)=x"2 /
-== T*g(n) = Tx"~2 ; 7g(n) =

x=n0=2 ’

T(n) = 0(g(n))
=
dc,ng >0 s.t. Vn = n,,

0<T) <c-gn)

Formally:

* Choosec=7
* Choosen,=2
* Then:

vn = 2,

0<2n?+10<7-n?




T(n) = O(g(n))

. L—1

Another example: NSRS - pi——
n = O(nz) 0<T)<c-gn)

T(n) = O(g(n))
40 4 = T
35 {|— 9in) =n"2 g(n) = n2 * Choosec=1
304 o * Chooseny=1
25 * Then
i vn =1,
15 -
i 0<n<n?
0.5 -
0.0 -

000 025 050 075 100 125 150 175 200
n



Big O notation with multiple variables

Upper bounds. f(m,n) is O(g(m,n)) if there exist constants ¢>0, m, = 0,
and n,= Osuch that0< f(m,n) < c-g(m,n) foralln = n,and m = m,.

Ex. f(m,n)=32mn*>+ 17mn + 32n°.
* f(m,n) is both O(mn*> + n*) and O(mn?).
* f(m,n) is O(n’) if a precondition to the problem implies m < n.
* f(m,n) is neither O(n’) nor O(mn?).

Typical usage. In the worst case, breadth-first search takes O(m + n) time
to find a shortest path from s to ¢ in a digraph with » nodes and m edges.



Big Oh Examples

3n* — 100n + 6 = O(n?) because 3n* > 3n* — 100n + 6
3n* — 100n + 6 = O(n®) because .01n* > 3n* — 100n + 6
3n”* — 100n + 6 # O(n) because c-n < 3n* when n > ¢

Think of the equality as meaning in the set of functions.



Suggested Reading

= Algorithms (CLRS)
¢ Chapter 3.1
® Section:
- Algorithm illuminated (Part 1) by Tim Roughgarden
¢ Chapter 2
® Section 2.1, 2.2






